


Vishay High Power Products

### Phase Control SCR, 70 A



| PRODUCT SUMMARY         |             |  |  |  |  |
|-------------------------|-------------|--|--|--|--|
| V <sub>T</sub> at 100 A | < 1.4 V     |  |  |  |  |
| I <sub>TSM</sub>        | 1400 A      |  |  |  |  |
| V <sub>RRM</sub>        | 1200/1600 V |  |  |  |  |

#### DESCRIPTION/FEATURES

The 70TPS..PbF High Voltage Series of silicon controlled rectifiers are specifically designed for high and medium power switching and phase control applications.



COMPLIANT

Typical applications are in input rectification (soft start) or AC-switches or high current crow-bar as well as others phase-control circuits. These products are designed to be used with Vishay HPP input diodes, switches and output rectifiers which are available in identical package outlines.

This product has been designed and qualified for industrial level and lead (Pb)-free ("PbF" suffix).

| MAJOR RATINGS AND CHARACTERISTICS  |                               |             |       |  |  |  |  |  |
|------------------------------------|-------------------------------|-------------|-------|--|--|--|--|--|
| PARAMETER                          | TEST CONDITIONS               | VALUES      | UNITS |  |  |  |  |  |
| I <sub>T(AV)</sub>                 | Sinusoidal waveform           | 70          | ٨     |  |  |  |  |  |
| I <sub>RMS</sub>                   | Lead current limitation       | 75          | A     |  |  |  |  |  |
| V <sub>RRM</sub> /V <sub>DRM</sub> | Range                         | 1200/1600   | V     |  |  |  |  |  |
| I <sub>TSM</sub>                   |                               | 1400        | А     |  |  |  |  |  |
| V <sub>T</sub>                     | 100 A, T <sub>J</sub> = 25 °C | 1.4         | V     |  |  |  |  |  |
| dV/dt                              |                               | 500         | V/µs  |  |  |  |  |  |
| dl/dt                              |                               | 150         | A/µs  |  |  |  |  |  |
| TJ                                 |                               | - 40 to 125 | °C    |  |  |  |  |  |

| VOLTAGE RATINGS |                                                                                               |                                                                           |                                                       |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| PART NUMBER     | V <sub>RRM</sub> /V <sub>DRM</sub> , MAXIMUM<br>REPETITIVE PEAK AND<br>OFF-STATE VOLTAGE<br>V | V <sub>RSM</sub> , MAXIMUM<br>NON-REPETITIVE PEAK<br>REVERSE VOLTAGE<br>V | I <sub>RRM</sub> ∕I <sub>DRM</sub><br>AT 125 °C<br>mA |  |  |  |  |  |
| 70TPS12PbF      | 1200                                                                                          | 1300                                                                      | 15                                                    |  |  |  |  |  |
| 70TPS16PbF      | 1600                                                                                          | 1700                                                                      | 15                                                    |  |  |  |  |  |

\* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay High Power Products Phase Control SCR, 70 A

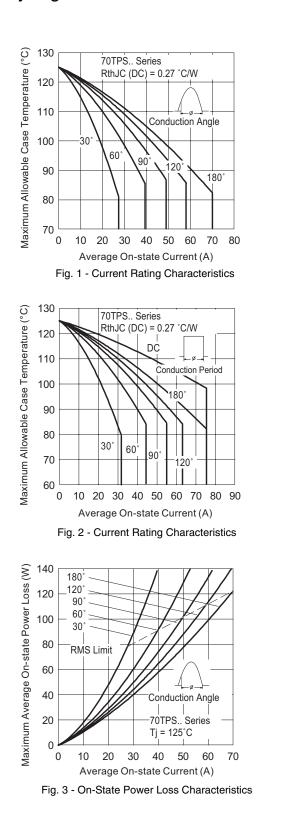


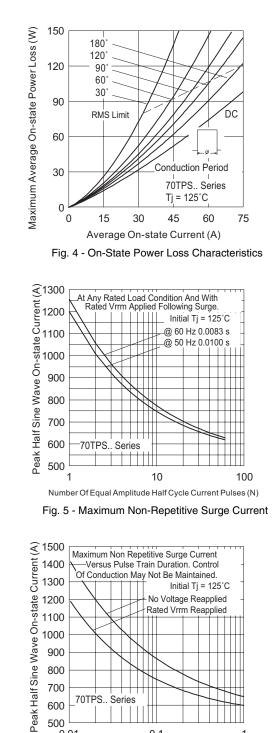
| ABSOLUTE MAXIMUM RATIN                                  | GS                                 |                                                        |                                                            |        |                  |
|---------------------------------------------------------|------------------------------------|--------------------------------------------------------|------------------------------------------------------------|--------|------------------|
| PARAMETER                                               | SYMBOL                             | TEST CONDITION                                         | VALUES                                                     | UNITS  |                  |
| Maximum average on-state current                        | I <sub>T(AV)</sub>                 | $T_C = 82 \ ^{\circ}C$ , 180° conduction half sine     | $T_C = 82 \text{ °C}, 180^\circ$ conduction half sine wave |        |                  |
| Maximum continuous RMS on-state<br>current as AC switch | I <sub>T(RMS)</sub>                | Lead current limitation                                | 75                                                         | А      |                  |
| Maximum peak, one-cycle                                 | <b>I</b>                           | 10 ms sine pulse, rated $V_{\ensuremath{RRM}}$ applied |                                                            | 1200   |                  |
| non-repetitive surge current                            | I <sub>TSM</sub>                   | 10 ms sine pulse, no voltage reapplie                  |                                                            | 1400   |                  |
| Maximum 12t for fusing                                  | l <sup>2</sup> t                   | 10 ms sine pulse, rated $V_{\text{RRM}}$ applied       | Initial $T_J = T_J$<br>maximum                             | 7200   | A <sup>2</sup> s |
| Maximum I <sup>2</sup> t for fusing                     | 1-1                                | 10 ms sine pulse, no voltage reapplie                  |                                                            | 10 200 | A-S              |
| Maximum I <sup>2</sup> $\sqrt{t}$ for fusing            | l²√t                               | t = 0.1 to 10 ms, no voltage reapplied                 | 102 000                                                    | A²√s   |                  |
| Low level value of threshold voltage                    | V <sub>T(TO)1</sub>                |                                                        | 0.916                                                      | v      |                  |
| High level value of threshold voltage                   | V <sub>T(TO)2</sub>                | T 105 %C                                               |                                                            | 1.21   | v                |
| Low level value of on-state slope resistance            | r <sub>t1</sub>                    | T <sub>J</sub> = 125 °C                                |                                                            | 4.138  |                  |
| High level value of on-state slope resistance           | r <sub>t2</sub>                    |                                                        | 3.43                                                       | mΩ     |                  |
| Maximum peak on-state voltage                           | V <sub>TM</sub>                    | 100 A, T <sub>J</sub> = 25 °C                          |                                                            | 1.4    | V                |
| Maximum rate of rise of turned-on current               | dl/dt                              | T <sub>J</sub> = 25 °C                                 | 150                                                        | A/µs   |                  |
| Maximum holding current                                 | Ι <sub>Η</sub>                     | T 05 %0                                                |                                                            | 200    |                  |
| Maximum latching current                                | ١L                                 | T <sub>J</sub> = 25 °C                                 |                                                            | 400    |                  |
| Maximum reverse and direct locks as aurrent             | 1 /1                               | T <sub>J</sub> = 25 °C                                 |                                                            | 1.0    | mA               |
| Maximum reverse and direct leakage current              | I <sub>RRM</sub> /I <sub>DRM</sub> | $T_J = 125 \text{ °C}$ $V_R = \text{Rated } V_{RRM}$   | /V <sub>DRM</sub>                                          | 15     |                  |
| Maximum rate of rise of off-state voltage               | dV/dt                              | T <sub>J</sub> = 125 °C                                |                                                            | 500    | V/µs             |

| TRIGGERING                                     |                    |                                         |                                   |        |       |
|------------------------------------------------|--------------------|-----------------------------------------|-----------------------------------|--------|-------|
| PARAMETER                                      | SYMBOL             |                                         | TEST CONDITIONS                   | VALUES | UNITS |
| Maximum peak gate power                        | P <sub>GM</sub>    | T - 20 up                               | <b>T</b> 00                       |        | w     |
| Maximum average gate power                     | P <sub>G(AV)</sub> | T = 30 μs                               |                                   | 2.5    | vv    |
| Maximum peak gate current                      | I <sub>GM</sub>    |                                         |                                   | 2.5    | Α     |
| Maximum peak negative gate voltage             | - V <sub>GM</sub>  |                                         |                                   | 10     |       |
| Maximum required DC gate<br>voltage to trigger |                    | T <sub>J</sub> = - 40 °C                |                                   | 4.0    | v     |
|                                                | V <sub>GT</sub>    | T <sub>J</sub> = 25 °C                  | Anode supply = 6 V resistive load | 1.5    |       |
| Voltage to trigger                             |                    | T <sub>J</sub> = 125 °C                 |                                   | 1.1    |       |
|                                                |                    | T <sub>J</sub> = - 40 °C                |                                   | 270    |       |
| Maximum required DC gate current to trigger    | I <sub>GT</sub>    | T <sub>J</sub> = 25 °C                  |                                   | 100    | mA    |
|                                                |                    | T <sub>J</sub> = 125 °C                 |                                   | 80     |       |
| Maximum DC gate voltage not to trigger         | $V_{GD}$           | T <sub>J</sub> = 120 °C, V <sub>D</sub> | PRM = Rated value                 | 0.25   | V     |
| Maximum DC gate current not to trigger         | I <sub>GD</sub>    |                                         |                                   | 6      | mA    |



# Phase Control SCR, 70 A Vishay High Power Products


| THERMAL AND MEC                                 | HANICAL   | SPECIFIC          | CATIONS                              |             |            |
|-------------------------------------------------|-----------|-------------------|--------------------------------------|-------------|------------|
| PARAMETER                                       | PARAMETER |                   | TEST CONDITIONS                      | VALUES      | UNITS      |
| Maximum junction temperature                    | range     | TJ                |                                      | - 40 to 125 | - °C       |
| Maximum storage temperature                     | range     | T <sub>Stg</sub>  |                                      | - 40 to 150 |            |
| Maximum thermal resistance, junction to case    |           | R <sub>thJC</sub> | DC operation                         | 0.27        |            |
| Maximum thermal resistance, junction to ambient |           | R <sub>thJA</sub> |                                      | 40          | °C/W       |
| Typical thermal resistance,<br>case to heatsink |           | R <sub>thCS</sub> | Mounting surface, smooth and greased | 0.2         |            |
| Approximate weight                              |           |                   |                                      | 6           | g          |
|                                                 |           |                   |                                      | 0.21        | oz.        |
| Mounting torgue                                 | minimum   |                   |                                      | 6 (5)       | kgf ⋅ cm   |
| Mounting torque                                 | maximum   |                   |                                      | 12 (10)     | (lbf ⋅ in) |
| Marking device                                  |           |                   | Case style Super-247                 | 70TPS12     |            |
|                                                 |           |                   | Case signe Super-241                 | 70TPS       | 16         |


| DEVICE | S     | INE HALF | WAVE CO | NDUCTIO | N     | RECTANGULAR WAVE CONDUCTION |       |       |       | UNITS |       |
|--------|-------|----------|---------|---------|-------|-----------------------------|-------|-------|-------|-------|-------|
| DEVICE | 180°  | 120°     | 90°     | 60°     | 30°   | 180°                        | 120°  | 90°   | 60°   | 30°   | UNITS |
| 70TPS  | 0.078 | 0.092    | 0.117   | 0.172   | 0.302 | 0.053                       | 0.092 | 0.125 | 0.180 | 0.306 | °C/W  |

Note

• The table above shows the increment of thermal resistance R<sub>thJ-hs</sub> when devices operate at different conduction angles than DC

## Vishay High Power Products Phase Control SCR, 70 A





700

600

500

0.01

70TPS.. Series

0.1

Pulse Train Duration (s) Fig. 6 - Maximum Non-Repetitive Surge Current

1



Phase Control SCR, 70 A Vishay High Power Products

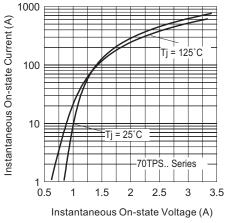



Fig. 7 - On-State Voltage Drop Characteristics

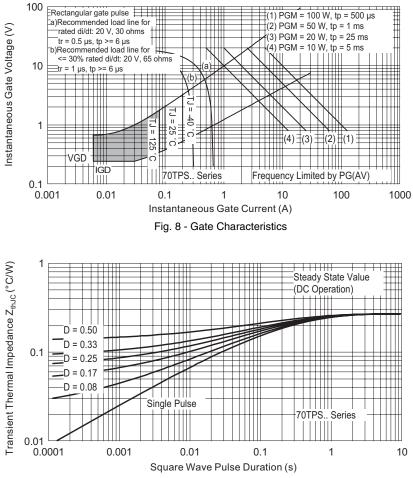
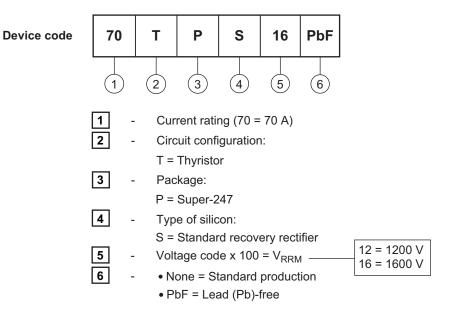




Fig. 9 - Thermal Impedance Z<sub>thJC</sub> Characteristics

Vishay High Power Products Phase Control SCR, 70 A



#### ORDERING INFORMATION TABLE



| LINKS TO RELATED DOCUMENTS                               |                                 |  |  |  |
|----------------------------------------------------------|---------------------------------|--|--|--|
| Dimensions                                               | http://www.vishay.com/doc?95073 |  |  |  |
| Part marking information http://www.vishay.com/doc?95070 |                                 |  |  |  |



Vishay

## Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.